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 An initial value investigation of the hydromagnetic convection flow of a viscous electrically conducting fluid
through a porous medium in a rotating parallel plate channel has been made using boundary-layer-type equa-
tions. The exact solution of the governing equations is evaluated and the structure of the different boundary
layers formed has been discussed in detail. The ultimate quasi-steady state velocity and temperature fields are
numerically computed for various values of the governing parameters. Also the shear stress on the plates and
the Nusselt numbers have been computed.

1. Introduction. The steady hydromagnetic rotating viscous flow through a non-porous or porous medium has
drawn attention in recent years for possible applications in geophysical and cosmic fluid dynamics. For example, the
channel flow problems where the flow is maintained by torsional or nontorsional oscillations of one or both boundaries
throw some light in finding out the growth and development of boundary layers associated with flows occurring in
geothermal phenomena. Claire Jacobs [1] has studied the transient effects considering the small amplitude torsional os-
cillations of disks. This problem has been extended to the hydromagnetic case by Murthy [3], who discussed torsional
oscillations of the disks maintained at different temperatures. Debnath [2] has considered an unsteady hydrodynamic
and hydromagnetic boundary flow in a rotating viscous fluid due to oscillations of plates including the effects of uni-
form pressure gradients and uniform suction. The structure of the velocity field and the associated Stokes, Ekman, and
Rayleigh boundary layers on the plates are determined for the resonant and nonresonant cases. Rao et al. [5] have
made an initial value investigation of the combined free and forced convection effects in an unsteady hydromagnetic
viscous incompressible rotating fluid between two disks under a uniform transverse magnetic field. This analysis has
been extended to porous boundaries by Sarojamma and Krishna [8] and later by Sivaprasad [11] to include the Hall
current effects. Mishra and Narayana [9] have studied the unsteady free convective flow through a porous medium
when the temperature of the plate is oscillating with time about a nonzero mean. Patil and Vadyanathan [4] have ana-
lyzed the fluid flow and the heat transfer in a rotating porous medium.

It is well known that in geothermal regions gases are electrically conducting and that they undergo the influ-
ence of a magnetic field. Keeping this in mind, Raptis [6] studied the unsteady MHD free convective flow of an elec-
trically conducting fluid through a porous medium bounded by an infinite vertical and porous plate. In recent times,
different problems related to transient convective flow through a porous medium have been discussed by Subba Bhatta
[10] and Ravindra Reddy [7].

In this paper, we make an initial value investigation of the MHD mixed convection flow of a viscous fluid
through a porous medium in a rotating parallel plate channel in the presence of a temperature-dependent heat source.
The perturbations in the flow are created by a constant pressure gradient along the plates in addition to nontorsional
oscillations of the lower plate. The exact solutions of the velocity and the temperature fields consist of the steady state
and the transient components. The time required for the transient effects to decay is discussed in detail and the ulti-
mate steady state consists of boundary layers on the plates and an interior. Attention is focused on the physical nature
of the solutions and the structure of the various kinds of boundary layers formed on the plates. The final steady state
velocity and temperature fields are numerically discussed for different values of the governing parameters. The shear
stress and the Nusselt number are tabulated. The particular case where both plates are at rest has also been computed
and analyzed.
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2. Formulation and Solution. We consider the unsteady flow of an incompressible, viscous fluid through a
porous medium bounded by two parallel nonconducting plates under a uniform transverse magnetic field H0. In the
undisturbed state both the plates and the fluid rotate with the same angular velocity Ω. At t > 0, the fluid is driven by
a constant pressure gradient parallel to the plate and in addition the lower plate performs nontorsional oscillations in
its own plane. Further, the plates are cooled or heated by a constant temperature gradient in some direction parallel to
the plane of the plates. We choose a Cartesian coordinate system O(x′, y′, z′) such that the plates are at z′ = 0 and
z′ = L and the Z-axis coincides with the axis of rotation of the plates. The unsteady hydrodynamic boundary-layer
equations of motion with respect to a rotating frame moving with angular velocity Ω in the absence of any input elec-
tric field are
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Combining Eqs. (1) and (2), we obtain
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where q′ = u′ + iv′ .
Integrating (3), we get

p′ ⁄ ρ0 = − gz′ + βg ∫ (T′
 − T0) dz′ + φ (ξ′, ξ

_
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where ξ′ = x′ − iy′ and   ξ
_

 ′ = x′ + iy′ .
We use (3) in Eq. (5) and obtain
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For the completeness of Eq. (7) we assume that

T
′
 − T0 = (Ax′ + By′) H (t′) + θ1 (z′, t′) (8)

where A and B are the gradients of the temperature along O(x′, y′) directions respectively, θ1
′ (z′, t′) is an arbitrary func-

tion of z′ and t′, and H(t′) is the Heaviside function. Taking T0 + Ax′ + By′ + θ1ω1
′  and T0 + Ax′ + + By′ + θ1ω2

′  as the di-
mensional temperatures of the lower and upper plates, respectively, for t > 0, we obtain the following equation:
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Introduction of the dimensionless var iables
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yields the governing equations with respect to a rotating frame in the dimensionless form
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The boundary conditions in the dimensionless form are 

q (z, t) = a exp (iωt) + b exp (− iωt)   at   z = 0 ,

q (z, t) = 0   at   z = 1 ,
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The initial conditions are q(z, 0) = 0 and θ(z, 0) = 0 .
Using Laplace transforms, the general solutions of (10) and (11) subjected to the boundary conditions (12) are
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The expression for χ has been evaluated but has not been mentioned due to its lengthiness.
3. Shear Stress and Rate of Heat Transfer. The dimensionless shear stresses τx and τy are obtained at the

lower and upper plates from (13) and are given by
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The rate of heat-transfer  coefficient (Nusselt number ) on the plates is given by
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4. Discussion of the Associated Boundary Layers. We shall discuss the interplay between the Hartmann
number Ha, the Ekman number E, and the porous parameter σ1 in determining the time required for the decay of the
transient terms in the solution. From (11), it follows that the transient velocity decays in dimensional time of order
1 ⁄ (π2 + Ha2 + σ1

2). This implies that the decay time of transient velocity is less than the decay time in the absence of
porosity of the medium.

The time required for the decay of the transient temperature is of order given by Max {(Ha2 + σ1
2)−1, Pr/α,

(1 − Pr)/(Ha2 + σ1
2 − α)}. In the steady-state limit the velocity distribution consists of two parts:

(i) The hyperbolic terms in z which give rise to layers of thickness of order {Ha2 + σ1
2 + [(Ha2 + σ1

2)2 + 
(ω − 2E−1)2]1 ⁄ 2 ⁄ 2}−1 ⁄ 2 near the plates through which the motion of the plate is communicated to the fluid.

(ii) The remaining terms represent an interior flow. We shall now discuss the role played by the Ekman num-
ber E, the Hartmann number Ha, and the porous parameter σ1 in the determination of the layers formed on the plates.
We shall consider the following cases of the frequency of oscillations:

(i) steady (ω = 0);
(ii) low frequency (ω << 1);
(iii) high frequency (ω >> 1);
(iv) intermediate frequency (ω = O(1)).
(i) Nonoscillatory Case (ω = 0) or Low-Frequency Oscillations
The solution represents the steady hydromagnetic boundary-layer flow superposed over a linear profile. The

former consists of the Ekman–Darcy–Hartmann layer on both plates. This layer can be regarded as an Ekman–Darcy
layer modified by the magnetic field or as an Ekman–Hartmann layer modified by porosity of the medium. When
E−1 >> σ1 >> Ha, the thickness of the boundary layer is O((E−1 + σ1

2)−1 ⁄ 2), which implies that in a porous medium the
influence of the boundary gets confined to a thinner layer in comparison to the usual Ekman layer. When E−1 >> σ1
and E−1>> Ha, the thickness of the layer is O((E−1 + 2σ1

2)−1 ⁄ 2), which shows that in the presence of a magnetic field
of sufficiently large magnetic force in a porous medium with low permeability the thickness of the Ekman–Darcy layer
is still more reduced, indicating that the influence of the boundary is confined to a comparably narrow region. When
E−1 << σ1 and E−1 << Ha, the thickness of the boundary layer is O(1/σ1) or O(1/Ha) according to whether σ1 > Ha or
σ1 < Ha. When E−1 << Ha and σ1 << Ha we find that the thickness of the layer is O(Ha2 + E−1 ⁄ 4Ha2)−1 ⁄ 2, which con-
firms that in the presence of the rotation the thickness of the Hartmann layer is reduced, and it is true even in the
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case of a porous medium of large permeability. When E−1 >> Ha >> σ1, the boundary-layer thickness is O((E−1 +
Ha2)−1 ⁄ 2), which is similar to the Ekman–Hartmann layer.

(ii) High-Frequency Oscillations (ω >> 1)
It is observed from the solution that the boundary layer  consists of a layer  of thickness O(1/ω) when ω is

much greater than E−1, Ha, and σ1. When ω D E−1 and Ha >> E−1 and σ1 >> E−1, the thickness of the boundary layer
is O((Ha2 + σ1

2)−1 ⁄ 2), which corresponds to the Darcy–Hartmann layer. We get a boundary layer of thickness
O(E−1 ⁄ 2) for ω D E−1 and E−1 >> Ha and E−1 >> σ1. In this case, the viscous effect is felt in the entire fluid region if
2E−1 = ω. For ω D E−1 and E−1 D Ha, σ1 the associated boundary layer is O({Ha2+ σ1

2 + [Ha2 + σ1
2 + E−1]1 ⁄ 2}−1 ⁄ 2) and

for ω D E−1, E−1 >> Ha, and E−1 >> σ1 the thickness is O(E−1 ⁄ 2) which is similar to the Ekman layer.
(iii) Intermediate-Frequency Oscillations (ω = O(1))
In this case, the steady-state flow consists of a Darcy–Hartmann layer of thickness O((E−1 + Ha2)−1 ⁄ 2) when

Ha and σ1 are much greater than E−1 and ω, and it is O((ω−2E−1)−1 ⁄ 2) when Ha and σ1 are much less than E−1. This
shows that the viscous effects pervade all over the fluid region if ω D 2E−1. If ω = 2E−1 and Ha, σ1 D O(1), then the
thickness is of order O((Ha2 + σ1

2)−1 ⁄ 2). When ω D O(1) and ωE ≥ 1 the thickness reduces to O([ω2E−2 + (Ha2

+ σ1
2)1 ⁄ 2 + Ha2 + σ1

2]−1 ⁄ 2) and this of order O(ωE−1) provided ω >> Ha and ω >> σ1.
5. Discussion of the Computational Analysis. The quasisteady parts of the velocity and temperature repre-

senting the ultimate flow have been computed numerically for different sets of governing parameters Gr, Ha, σ1, α,
and ω, and their profiles are plotted in Figs. 1–12. For computational purposes we have assumed Gr to be real so that
the applied pressure gradient in the y-direction is zero and Gr is positive or negative depending on whether the plates
are heated or cooled along the direction of the x-axis (nonzero pressure gradient). Also the Prandtl number Pr is cho-
sen to be Pr = 0.71. Since the thermal buoyancy balances the vertical pressure gradient in the absence of any other
applied force in the direction of rotation, the flow takes place in planes parallel to the boundary plates. However the
flow is three-dimensional and all the perturbed variables have been obtained using boundary-layer-type equations,
which would reduce to two coupled partial differential equations for a complex velocity and the real temperature.

Figures 1–7 correspond to profiles when one of the plates (lower) is oscillating with a given amplitude and
other is at rest. Figures 8–12 correspond to the profiles when both plates are at rest. We observe from Figs. 1 and 2
that in general u and v carry opposite signs for all Gr positive or negative. However, for Gr > 0 the resultant flow
(Table 1) is directed towards the axis of zero pressure gradient (y-axis) with the positive obtuse phase angle relative
to the x-axis. When Gr < 0, the same resultant flow is directed towards the nonzero pressure gradient axis (x-axis)
with the negative obtuse phase angle. The magnitudes of u and v increase with |Gr| (Figs. 1 and 2) and hence the re-
sultant velocity increases in its magnitude with |Gr|. Figures 3 and 4 indicate the behavior of the velocity components
u and v with variations in Ha, σ1, ω, and E. We note that individually u exhibits a slight enhancement in contrast to
v, which retards appreciably with increase in Ha and ω. Value of u experiences a fluctuation, while v shows a definite
retardation with increase in σ1. An increase in E marks a significant growth, although v experiences retardation. De-

TABLE 1. Phase of Resultant Velocity for Ha = 5, ω = 5, σ1 = 2, and E = 0.01

103
2⋅103 3⋅103 −3⋅103 −2⋅103 −103

0.1 64o49′ 84o35′ 178o38′ 319o3′ 330o90′ 335o3′

0.2 78o11′ 167o3′ 178o42′ 344o7′ 344o56′ 345o17′

0.3 165o16′ 165o38′ 165o45′ 346o41′ 346o19′ 346o13′

0.4 165o45′ 165o54′ 169o46′ 346o26′ 346o16′ 346o14′

0.5 166o17′ 166o19′ 166o17′ 346o25′ 346o19′ 346o24′

0.6 166o26′ 166o23′ 166o22′ 346o23′ 346o20′ 346o27′

0.7 164o45′ 164o46′ 164o27′ 344o48′ 344o47′ 344o46′

0.8 158o53′ 158o49′ 174o54′ 338o53′ 338o51′ 338o58′

0.9 146o14′ 146o15′ 146o17′ 326o14′ 326o16′ 326o17′

z
Gr
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spite these individual variations, it is interesting to note that the resultant velocity (Fig. 5) experiences a retardation
with increase in Ha, σ1, and ω, while it exhibits an appreciable enhancement with increase in E. The retardation due
to an increase in the porous parameter is more rapid than that due to the increase in the Hartmann number. In other

Fig. 1. Profiles of dimensionless axial velocity u for
the oscillating lower plate at different Gr: 1) Gr = 103;
2) 2⋅103; 3) 3⋅103; 4) −103; 5) −2⋅103; 6) −3⋅103.

Fig. 2. Profiles of dimensionless transverse velocity v
for the oscillating lower plate at different Gr. For nota-
tion see Fig. 1.

Fig. 3. Profiles of dimensionless axial velocity u for the oscillating lower plate:
1) Ha = 5, σ1 = 5, ω = 2, and E = 0.01; 2) 10, 5, 2, and 0.01; 3) 5, 2, 2,
and 0.01; 4) 5, 10, 2, and 0.01; 5) 5, 5, 2, and 0.05; 6) 5, 5, 5, and 0.01.

Fig. 4. Profiles of dimensionless transverse velocity v for the oscillating lower
plate. For notation see Fig. 3.
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words, the resistance offered by the porosity of the medium is much more than the resistance due to the magnetic
lines of force�

Similar observations are made when both boundaries are at rest. We find that the resultant velocity increases
with |Gr| (Fig. 10) and E, whereas it decreases with an increase in Ha and σ1.

The behavior of the temperature may be analyzed from Figs. 6 and 7. When Gr > 0 we find (Fig. 6) that ac-
tual temperature decreases from its prescribed value on the lower boundary to some minimum attained at an axial dis-
tance of 0.2 and later increases to reach its prescribed value on the upper plate. In the former case (Gr > 0), it is
interesting to note that when Gr increases, the low-temperature region spreads gradually from the lower half to the
upper half when the temperature decreases rapidly with increase in Gr in the entire flow region. In contrast, with an

Fig. 5. Profiles of dimensionless resultant velocity q for the oscillating lower
plate. For notation see Fig. 3.

Fig. 6. Profiles of dimensionless temperature θ for the oscillating lower plate:
1) Gr = 103 and σ1 = 5; 2) 2⋅103 and 5; 3) 3⋅103 and 5; 4) −103 and 5; 5)
−2⋅103 and 5; 6) −3⋅103 and 5; 7) 2⋅103 and 10; 8) 2⋅103 and 15.

Fig. 7. Profiles of dimensionless temperature θ for the oscillating lower plate:
1) Ha = 5, ω = 2, α = 5, and E = 0.01; 2) 10, 2, 5, and 0.01; 3) 5, 10, 5,
and 0.01; 4) 5, 2, 10, and 0.01; 5) 5, 2, 15, and 0.01; 6) 5, 2, 5, and 0.05.

Fig. 8. Profiles of dimensionless axial velocity u for plates at rest at different
Gr. For notation see Fig. 1.
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increase in |Gr| (for Gr < 0), the actual temperature increases at all corresponding points in the flow region. Also, it
increases for an increase in the porous paramter σ1 in the flow region. Figure 7 indicates the behavior of the perturbed
temperature θ for variations in Ha, ω, α, and E. From the profiles we see that the actual temperature increases with
Ha and ω. Likewise, for an increase in the heat-source parameter α, the temperature decreases near the lower plate
while it increases in the rest of the region. The temperature also decreases with increase in E in the whole region.

The shear stress and the rate of heat transfer (Nusselt number) is given in Tables 2–4. The magnitude of these
stresses at the stationary upper plate is significantly high compared to the respective magnitudes at the oscillating
lower plate. Both τx and τy slightly reduce at the upper plate whereas they enhance at the lower plate with Ha and
σ1 (Table 2). The retardation at the upper plate is significantly low compared to the enhancement at the lower plate.
Also, τx rapidly increases while τy reduces with E at either boundaries. An increase in |Gr| (Gr > 0 or Gr < 0) en-

Fig. 9. Profiles of dimensionless transverse velocity v for plates at rest at dif-
ferent Gr. For notation see Fig. 1.

Fig. 10. Profiles of dimensionless resultant velocity q for plates at rest at dif-
ferent Gr. For notation see Fig. 1.

Fig. 11. Profiles of dimensionless axial velocity u for plates at rest: 1) Ha = 5,
σ1 = 5, and E = 0.01; 2) 10, 5, and 0.01; 3) 5, 10, and 0.01; 4) 5, 5, and
0.05.

Fig. 12. Profiles of dimensionless transverse velocity v for plates at rest. For
notation see Fig. 11.
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hances the stresses on the stationary plate, but on the oscillating plate τx experiences a slight enhancement with |Gr|
for Gr > 0 and retardation for Gr < 0. The reverse behavior is observed for τy.

The Nusselt number (Nu) at the upper and lower plates is given in Tables 3 and 4 for variations in Gr, σ1,
α, Ha, E, and ω. We observe that the magnitudes of Nu at the oscillating lower plate for different values of the said
parameters are fairly high in comparison to the respective values at the stationary upper plate. An increase in Gr for
Gr > 0 enhances Nu at both boundaries, although the enhancement at the oscillating plate is quite significant compared
to its growth at the stationary plate. In contrast, an increase in |Gr| for Gr < 0 reduces Nu at either boundary and the

TABLE 2. Shear Stresses at the Plates

Gr 5⋅102 103 −5⋅102 −103
5⋅102 5⋅102 5⋅102 5⋅102

σ1 5 5 5 5 10 5 5 5

Ha  0.01 0.01 0.01 0.01 0.01 0.001 0.01 0.3

τx at the upper plate

2 28.80483 53.66465 −26.91489 −48.40278 27.29567 26.80490 58.1418 60.2681

5 27.29567 54.64835 −27.40967 −49.29181 26.16216 27.29568 40.3108 40.5955

10 25.09653 50.24580 −25.20201 −45.32142 23.46271 25.09653 29.4968 29.5525

τy at the upper plate

2 −19.03471 −38.11259 19.12105 34.38336 −13.95359 −19.03474 −9.40543 −3.34614

5 −13.95359 −27.93874 14.01672 25.20484 −10.10450 −2.8905 −2.89050 −0.97547

10 −8.25556 −16.52962 8.29255 14.91180 −6.27008 −8.2556 −1.09838 −0.36731

τx at the lower plate

2 −2.33521 −2.9242 −1.15705 −0.68579 −5.34016 −2.30257 −12.66096 −14.31193

5 −5.34026 −6.4637 −3.09295 −2.19406 −7.66425 −5.27073 −11.14355 −11.62517

10 −8.94756 −10.1670 −6.50854 −5.53293 −10.6215 −8.85272 −12.68857 −12.98849

τy at the lower plate

2 −11.96866 −9.61565 −16.67467 −18.55707 −13.02930 −12.24150 −2.84333 −4.20110

5 −13.02936 −11.23170 −16.62467 −18.06280 −14.34495 −13.27756 −8.00732 −7.97324

10 −15.20412 −14.22851 −17.15534 −16.50998 −16.41356 −15.40515 −11.52538 −11.32421

E

TABLE 3. Dependence of Nusselt Number at the Plates on Ha, Gr, σ1, and α

Gr 5⋅102 103 −5⋅102 −103 5⋅102 5⋅102 5⋅102 5⋅102 5⋅102

σ1 5 5 5 5 10 15 5 5 5

Ha  5 5 5 5 5 5 10 15 20

upper plate

2 2.7183 3.3777 4.5127 1.8645 1.2432 −0.2437 3.0275 5.2341 7.9296

5 2.6213 3.0274 3.4531 1.9039 1.2340 −0.1338 2.8791 3.6476 5.8641

10 2.5692 2.8538 2.9617 1.9331 1.2634 −0.2191 2.8622 2.7832 2.8916

lower plate

2 20.2667 49.8712 99.3583 −19.2438 −48.8050 −97.9940 47.1056 52.6512 57.7514

5 19.1276 47.1056 93.7671 −18.1543 −46.0992 −92.6426 45.8195 50.9174 55.6089

10 18.4680 45.4445 90.4041 −17.5013 −44.4788 −89.4429 45.2773 49.4465 54.5727

α
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reduction is notable at the oscillating plate, as in the preceding case. Also the rate of heat transfer reduces with in-
crease in Hartmann number at either boundary for all variations in other parameters. However, other parameters being
fixed, an increase in the heat source parameter enhances Nu at either boundary. The lower the permeability of the me-
dium (corresponding to increase in σ1), the higher the rate of heat transfer at the oscillating plate and the less at the
stationary plate. We also observe that Nu reduces in general with increase in E or ω on either plate (Table 3), except
for the stationary plate for higher ω C 20.

NOTATION

z′, axis of rotation; x′ and y′, dimensional coordinates along and normal to the plane; x and y, dimensionless
coordinates along and normal to the plane; t, dimensionless time; L, characteristic length; a, b, coefficients of the im-
posed nontorsional oscillations; u and v, dimensionless axial and transverse velocity components; T0, characteristic tem-
perature; H(t), Heaviside step function; E, Ekman number; Ha, Hartmann number; Pr, Prandtl number; Gr1 and Gr2,
Grashof numbers along x and y directions; R, pressure gradient parameter; Nu, Nusselt number; Q, strength of the heat
source; k, permeability of the porous medium; p′, pressure; k1, thermal conductivity; ρ0, density of the fluid in the
equilibrium state; β, coefficient of volume expansion; cp, specific heat at constant pressure; σ, electrical conductivity;
σ1, porous parameter; µ, coefficient of viscosity; µe, magnetic permeability; Ω, angular velocity; ω, frequency of the
nontorsional oscillations; τx and τy, dimensionless shear stresses along x and y directions; α, dimensionless heat source
parameter; α1, thermal diffusivity; ν, coefficient of kinematics viscosity; θ, dimensionless temperature; θ1ω1

′  and θ1ω2
′ ,

prescribed values of θ1 on the lower and upper plates.
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E

TABLE 4. Dependence of Nusselt Number at the Plates on Ha, ω, and E 

ω 2 5 10 20 2 2 2 2

Ha   0.01 0.01 0.01 0.01 0.001 0.1 0.3 0.5

upper plate

2 2.7183 2.5353 2.4187 2.4389 3.3335 −1.9565 −3.9844 −4.3104

5 2.6213 2.2085 2.0934 2.1134 3.3251 1.36005 1.2809 1.2734
10 2.5692 2.0565 1.9445 1.9446 3.3113 2.4113 12.4002 2.3987

lower plate

2 20.2267 17.8678 7.7956 3.2613 160.5124 11.9567 7.9476 7.2155
5 19.1277 17.9461 7.9637 3.3440 157.7720 18.1405 15.9561 15.5290

10 18.4680 19.0814 8.7652 3.7552 153.3780 24.1287 22.6140 22.3119
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